Eliciting a directed acyclic graph for a multivariate time series of vehicle counts in a traffic network
نویسندگان
چکیده
In this paper we consider the problem of modelling multivariate time series of vehicle counts in traffic networks. We propose using a model called the linear multiregression dynamic model (LMDM). The LMDM is a multivariate Bayesian dynamic model which uses any conditional independence and causal structure across the time series to break down the complex multivariate model into simpler univariate dynamic linear models. The conditional independence and causal structure in the time series can be represented by a directed acyclic graph (DAG). The DAG not only gives a useful pictorial representation of the multivariate structure, but it is also used to build the LMDM. Therefore, eliciting a DAG which gives a realistic representation of the series is a crucial part of the modelling process. In this paper we elicit a DAG for the multivariate time series of hourly vehicle counts at the junction of three major roads in the UK. A flow diagram is introduced to give a pictorial representation of the possible vehicle routes through the network. It is shown how this flow diagram, together with a map of the network, can suggest a suitable DAG for the time series suitable for use with an LMDM.
منابع مشابه
ELICITING A DIRECTED ACYCLIC GRAPH FOR A MULTIVARIATE TIME SERIES OF VEHICLE COUNTS IN A TRAFFIC NETWORK Running heading: ELICITING A DIRECTED ACYCLIC GRAPH
The problem of modelling multivariate time series of vehicle counts in traffic networks is considered. It is proposed to use a model called the linear multiregression dynamic model (LMDM). The LMDM is a multivariate Bayesian dynamic model which uses any conditional independence and causal structure across the time series to break down the complex multivariate model into simpler univariate dynam...
متن کاملEliciting a DAG for a multivariate time series of vehicle counts in a traffic network
In this paper we elicit a directed acyclic graph (DAG) for the multivariate time series of hourly vehicle counts at the junction of three major roads in the UK. A flow diagram is introduced to give a pictorial representation of the possible vehicle routes through the network. It is shown how this flow diagram, together with a map of the network, can suggest a suitable DAG which represents the c...
متن کاملMoving Vehicle Tracking Using Disjoint View Multicameras
Multicamera vehicle tracking is a necessary part of any video-based intelligent transportation system for extracting different traffic parameters such as link travel times and origin/destination counts. In many applications, it is needed to locate traffic cameras disjoint from each other to cover a wide area. This paper presents a method for tracking moving vehicles in such camera networks. The...
متن کاملظرفیت شبکه های حذفی تحت کدینگ فضایی شبکه
We study the capacity of point-to-point erasure networks under a restricted form of network coding to which we refer as spatial network coding. In this form of coding, the nodes can not perform coding on successive packets which are received from one incoming link. The coding at a node is restricted to the packets received at the same time slot from different incoming links...
متن کاملVehicle's velocity time series prediction using neural network
This paper presents the prediction of vehicle's velocity time series using neural networks. For this purpose, driving data is firstly collected in real world traffic conditions in the city of Tehran using advance vehicle location devices installed on private cars. A multi-layer perceptron network is then designed for driving time series forecasting. In addition, the results of this study are co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007